H-JG Consulting

Dr. Hans-Joachim Graf

H-JG Consulting

www.hans-joachim-graf.com www.grafcompounder.com

All About Compounding

Artificial Intelligence [AI] in Rubber Compounding: Introduction of GrafCompounder 4.0.6

Content of this presentation

- 1. Introduction
- 2. Tools in Compounding
 - 1. Design of Experiment and Al Program
 - 2. Compounding and Artificial Intelligence
- 3. Program GrafCompounder 4.0.6
- 4. Program tools
- 5. Confirmation of Simulation
- 6. Conclusion

Introduction

Tools in Compounding GrafCompounder Version 4.0.6 **Program Tools** Confirmation of Simulation Conclusion

Computer Aided Compound **Development**

- **Bridgestone Patent 1994 Inventor: Akihiko Abe**
- **Bridgestone Patent 2002 Inventor: Yukio Nakajima**
- Colour Matching Patents from BASF, CyanAmid, DuPONT
- Empirical DoE Patent: Honeywell
- Recipe Libary Search and Comparison CombiChem, GE, Hunt (Private)

(12) United States Patent Nakajima	US006411945B1 (10) Patent No.: US 6,411,945 B1 (45) Date of Patent: Jun. 25, 2002	
 (54) METHOD AND APPARATUS FOR DESIGNING MULTI-COMPONENT MATERIAL, OPTIMIZATION ANALYZER AND STORAGE MEDIUM USING LEARNI PROCESS (75) Inventor: Yukio Nakajima, Tokyo (JP) (73) Assignee: Bridgestone Corporation, Tokyo (JP) (73) Assignee: Bridgestone Corporation, Tokyo (JP) (*) Notice: Subject to any disclaimer, the term of th patent is extended or adjusted under 3 U.S.C. 154(b) by 0 days. (21) Appl. No.: 09/051,416 (22) PCT Filed: Aug. 8, 1997 (86) PCT No.: PCT/JIP97/02784 § 3711 (c)(1), (2), (4) Date: Apr. 6, 1998 (87) PCT Pub. No.: W098/06550 PCT Pub. Date: Feb. 19, 1998 (30) Foreign Application Priority Data 	JP 9-16654 1/1997 WO WO 94/16877 8/1994 ING OTHER PUBLICATIONS Goldberg, David E., "Genetic Algorithm in Search, Optimi- zation and Machine Learning," Addison-Wesley, 1989.* Oda, Juhachi, Okada, Hiroyasu, "Design method of mate- rials composed of some ingredients by Using neural act	ores RK


```
on number: 0 647 911 A2
```

CATION

G06F 17/50

or: Abe, Akihiko Ogawa-higashi-cho ira-shi, Tokyo (JP)

esentative : Whalley, Kevin KS & CLERK,) Lincoln's Inn Fields don WC2A 3LS (GB)

Tokyo 104 (JP)

In order to perform tire design and development highly efficiently and provide a tire at low cost, a tire basic model for representing a tire cross-sectional shape including an internal structure and being divided into a plurality of elements, an objective function for representing

Tools in Compound Development

Database Oriented

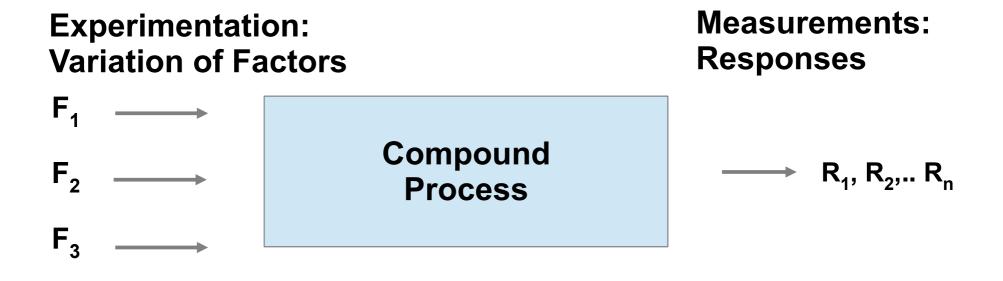
- Better utilization of historic compound data base
- Faster results minimizes efforts and time in development
- Increases creativity through compound simulation

Experimentation Oriented

- Evaluation of New Material without History
- Correlation between effect of factors on response
- Creates statistically sound knowledge about ingredients and processes

Tools in Compound Development

Experimentation oriented

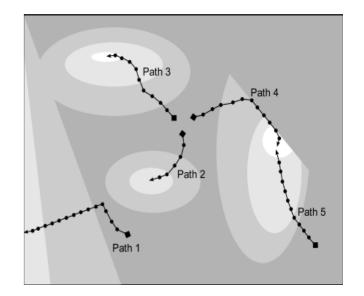

→Input: Factor Variation

- Experiments according DoE systematic
- Testing
- Data treatment: ANOVA, Regression, Correlation between factor variation and response

Output: Recipe, Correlation Maps, Overlay Plots

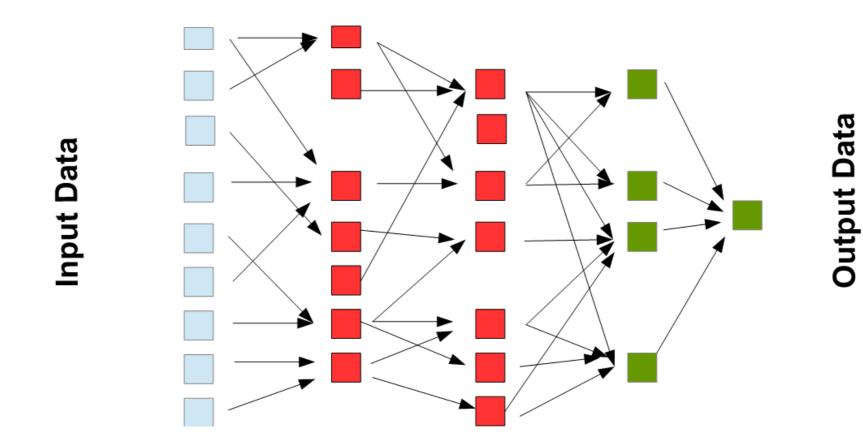
Objective of the Experiment is the identification of the factors $(F_{1,}..F_{n})$ type of influence on the responses $(R_{1,}...R_{n})$ and description with mathematical equations for further processing.

$$R_{i(1...n)} = f(A_0 + A_1F_1 +A_nF_n +)$$


Tools in Compound Development

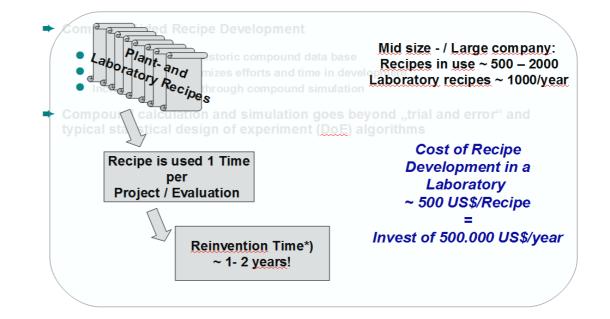
Database Oriented

Input: Data + Multi target query


- Data treatment with Multi Objective Evolutionary Algorithm (MOEA)
- Numerical Solution with a Gradient Walking Method and data treatment simultaneously.
- Approximation Function calculates distance from target.

Output: Recipe with Ingredients and its Properties

- Each square represents a data column: Recipe and property information
- Simultaneous treatment of all data columns in small steps


Algorithm used in Al Programming

- k-Means-Algorithm
 - Creates cluster, calculates mean (Centroide) reoganization, Iteration
- Genetic Algorithm
 - Proposed Solution, iteration and mutation towards optimum, selection of results
- Neuronal Net
 - Complex algorithm (Neuron): Calculation of a weighted sum, normalisation to emphazise or dampen the summands. "Input – Hidden – Output" layer. Feed Forward Networks / Recurrent Neuronal Networks

Compound Database

- Unorganized
- Incomplete
- Inhomogeneous

Solution

Inclusion / Exclusion of Recipes from query.

Analytical tools for transparency

Addition of Data with merger function

Confirmation Experiment for Result verification

Database created with Statistic Experimental Design (DoE)

- Organized / limited size
- Variation of few factors according DoE scheme
- Optimization, numerical and graphical / prediction Tool available in the software
- Computer Aided Recipe Development with GrafCompounder using Database created historically
 - Unorganized / Unlimited
 - Multiple Factor Query
 - Compound Simulation according Multi Targets
- Calculation in multiple small steps excludes none linear effects.
- Accurate Property Data yield Output in 95% confidence interval.

Pull Down Menue

•Clear all data
•Load Demo Data
✓ Simple
✓ Advanced
•Openfile *Data.gc File*•Merge Recipes from

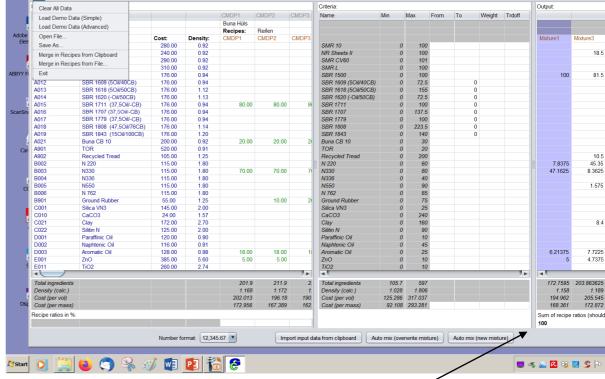
- Clipboard
- File

•Exit

Clear All Data							Criteria:							Output:	
Load Demo Dat	a (Simple)			CMDP1	CMDP2	CMDP3	Name	Min	Max	From	То	Weight	Trdoff		
Load Demo Dat				Buna Hüls											
	a (Auvanceu)			Recipes:	Reifen										
Open File		Cost:	Density:	CMDP1	CMDP2	CMDP3								Mixture1	Mixture3
Save As		280.00	0.92				SMR 10		0 100						
Merge in Recipe	s from Clipboard	240.00	0.92				NR Sheets II		0 100						18
Merge in Recipe		290.00	0.92				SMR CV60		0 101						
	is nonnene	310.00	0.92				SMR L		0 100						
Exit		176.00	0.94				SBR 1500		0 100					100	81.
A012	SBR 1609 (50il/40CB)	176.00	0.94				SBR 1609 (50il/40CB)		0 72.5			0			
A013	SBR 1618 (50il/50CB)	176.00	1.12				SBR 1618 (50il/50CB)		0 155			0			
A014	SBR 1620 (-Oil/50CB)	176.00	1.13				SBR 1620 (-Oil/50CB)		0 72.5			0			
A015	SBR 1711 (37,50il/-CB)	176.00	0.94	80.00	80.00	8(SBR 1711		0 100			0			
A016	SBR 1707 (37,50il/-CB)	176.00	0.94				SBR 1707		0 137.5			0			
A017	SBR 1779 (37,50il/-CB)	176.00	0.94				SBR 1779		0 100			0			
A018	SBR 1808 (47,50il/76CB)	176.00	1.14				SBR 1808		0 223.5			0			
A019	SBR 1843 (150il/100CB)	176.00	1.20				SBR 1843		0 140			0			
A021	Buna CB 10	200.00	0.92	20.00	20.00	21	Buna CB 10		0 30						
A901	TOR	520.00	0.91			-	TOR		0 20						
A902	Recycled Tread	105.00	1.25				Recycled Tread		0 200						10.
B002	N 220	115.00	1.80				N 220		0 60					7.8375	45.3
B003	N330	115.00	1.80	70.00	70.00	70	N330		0 80					47,1625	8.362
B004	N336	115.00	1.80			- 1	N336		0 40					11.1020	0.002
B005	N550	115.00	1.80				N550		0 90						1.57
B006	N 762	115.00	1.80				N 762		0 85						1.071
B901	Ground Rubber	55.00	1.00		10.00	20	Ground Rubber		0 75						
C001	Silica VN3	145.00	2.00		10.00		Silica VN3		0 25						
C010	CaCO3	24.00	1.57				CaCO3		0 240						
C021	Clay	172.00	2.70				Clay		0 160						8.4
C022	Silitin N	125.00	2.00				Silitin N		0 90						0.
D001	Paraffinic Oil	125.00	0.90				Paraffinic Oil		0 10						
									0 10						
D002	Naphtenic Oil	116.00	0.91	40.00	40.00		Naphtenic Oil							0.04075	7 700
D003	Aromatic Oil	128.00	0.98	18.00			Aromatic Oil		0 25					6.21375	7.722
E001	ZnO	385.00	5.60	5.00	5.00		ZnO		0 10					5	4.737
E011	TiO2	260.00	2.74			-	TiO2	_	0 10		_		_		
						7 Þ.	4						F		
Total ingredients				201.9			Total ingredients	105						172.7595	
Density (calc.)				1.168			Density (calc.)	1.02						1.158	1.18
Cost (per vol)				202.013		190.	Cost (per vol)	125.28	317.037					194.962	205.54
Cost (per mass)				172.956	167.389	162.	Cost (per mass)	92.10	293.281					168.361	172.87.
Recipe ratios in %:														Sum of recipe	ratios (chou
coope ratios in 70.			1											100	1803 (300
														100	
				5 07 P	<u> </u>										
		Number fo	ormat: 12,34	5.67 💌		port input d	ata from clipboard A	uto mix (o	verwrite mixt	ure)	Auto m	ix (new mixtu	ire)		
			- 1.5												
	🝅 🥱 😪 🍕			3 🔗 🗌										🌮 🔊 🔐 🕷	

•Paste file from any table calculation program with Button: *Import Data from Clipboard*

rafCompounder Screen	File Edit Diagra Input data:							Criteria:					Output:		_
	input uata.				CMDP1	CMDP2	CMDP3	Name Min	May	x From	To Weigh	nt Trdoff	Ouipui.		
		NR SBR Merger			Buna Hüls	OMDT 2	ONDI O	Nume	inter	A HIGH	TO Weigh	it muon			18.5 31.5 31.5 33.5 625 575 8.4 225 575 8.4 225 575 625 575 625 575
	2				Recipes:	Reifen									
Data field	Code:	Ingredients:		Density:	CMDP1	CMDP2	CMDP3						Mixture1	Mixture3	
	A001 A002	SMR 10 NR Sheets II	280.00 240.00	0.92				SMR 10 NR Sheets II	0	100 100				19.5	
• •	A002	SMR CV60	290.00	0.92				SMR CV60	0	100				10.0	
○ Code	A004	SMR L	310.00	0.92				SMR L	0	100					
	A011	SBR 1500	176.00	0.94				SBR 1500	0	100			100	81.5	
	A012 A013	SBR 1609 (50il/40CB) SBR 1618 (50il/50CB)	176.00 176.00	0.94				SBR 1609 (50il/40CB) SBR 1618 (50il/50CB)	0	72.5 155	0				
 Ingredient name 	A013	SBR 1620 (-Oil/50CB)	176.00	1.12				SBR 1620 (-Oil/50CB)	0	72.5	0				
•	A015	SBR 1711 (37,50il/-CB)	176.00	0.94	80.00	80.00	8	SBR 1711	0	100	0				
 Cost information 	N A016	SBR 1707 (37,50il/-CB)	176.00	0.94				SBR 1707	0	137.5	0				
	A017 A018	SBR 1779 (37,50il/-CB)	176.00	0.04 1.14				SBR 1779	0	100 223.5	0				
_	A018	SBR 1808 (47,501/760B)	- 176.00 176.00	1.14				SBR 1808 SBR 1843	0	140	0				
 Density 	A021	SBR 1808 (47,5Oil/76CB) SBR 1843 (15Oil/100CB) Buna CB 10	200.00	0.92	20.00	20.00) 21	Buna CB 10	Ő	30					
		TOR	520.00	0.91				TOR	0	20					
ulterule flatel	A902	Recycled Tread	105.00	1.25				Recycled Tread	0	200			7 0075	10.5	
riteria field	B002 B003	N 220 N330	115.00 115.00	1.80 1.80	70.00	70.00	7	N 220 N330	0	60 80			7.8375	45.35	
	B004	N336	115.00	1.80	70.00	70.00	1	N336	0	40			47.1023	0.0020	
 Min/Max Value 	B005	N550	115.00	1.80				N550	0	90				1.575	
	B006	N 762	115.00	1.80				N 762	0	85					
• •	B901 C001	Ground Rubber Silica VN3	55.00 145.00	1.25		10.00) 20	Ground Rubber Silica VN3	0	75 25					
 Query column: 	C010	CaCO3	24.00	1.57				CaCO3	0	240					
	4 C021	Clay	172.00	2.70				Clay	0	160				8.4	
F	C022	Silitin N	125.00	2.00				Silitin N	0	90					
○ From	D001	Paraffinic Oil Naphtenic Oil	120.00 116.00	0.90				Paraffinic Oil Naphtenic Oil	0	10 45					
÷ • • •	D002	Aromatic Oil	128.00	0.91	18.00	18.00) 1:	Aromatic Oil	0	25			6.21375	7.7225	
o To	E001	ZnO	385.00	5.60	5.00			ZnO	0	10			5	4.7375	
0 10	5 E011	TiO2	260.00	2.74				TiO2	0	10					
							7.	•				7.			
○ Weight	Total ingredients Density (calc.)				201.9 1.168	211.9			05.7 028	597 1.806			172.7595	203.863625	
	Cost (per vol)				202.013	196.18			286 31				194.962	205.545	
TraiOff	Cost (per mass)				172.956				108 29				168.361	172.872	
○ TrdOff	Recipe ratios in %:													ratios (should l	эе 100
													100		
Dutput field			Number for	mat: 12,345	5.67	In	nport input d	ata from clipboard) Auto mix	(overwrit	te mixture)	Auto mix (new mi	xture)			


Information Area

Total Sum of Ingredients
 Density (calc)

 According to density information in Column
 Cost (per volume)

•Cost (per mass)

•Recipe ratio in %

on 4.0.4 - G·\My Graf

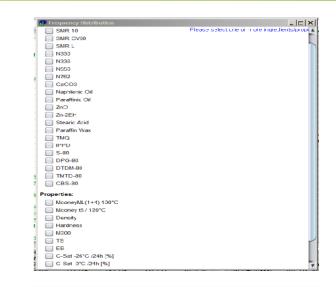
File Edit Diagram H

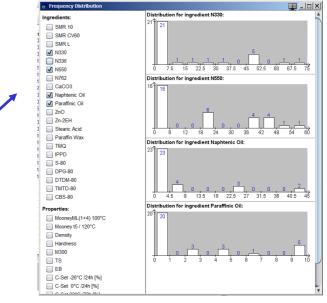
Control: Sum of recipes used for calculation should be always 100%.

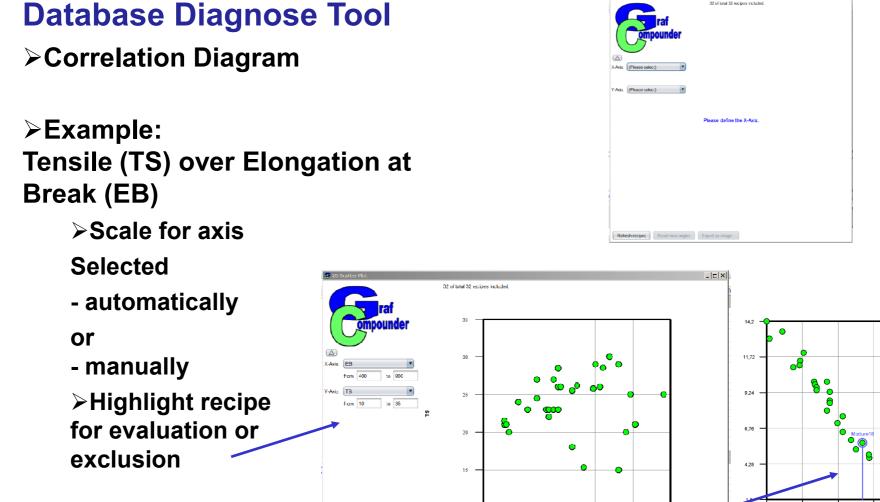
How to do a query:

- 1. Ingredients Exclude with target = 0
- 2. Properties
 - ✓ Target from Min value to Max value
 - Put a weight on property target,

if more important than others


 In case of conflicting target: Give a preference with Trdoff: Back off a bit from the target in favour of others


2							0.025	
4						2.9725	2.985	
4.06						2.35885	3.585825	
0.25							0.003125	
1.25							0.015625	
1.5					In			
2.63					Ч	1.452825	1.183575	
80						30.7739	29.402	
39						32.0873	32.907	
1.21						1.0598	1.040925	
71	47	50	50	50		50.01	52.711	
14.2	7					5.08455	6.2179	N
30	25					25.69705	26.107	
785		600				634.6817	598.35	
83		10	10			22.4705	15.369	
16		6				8.525	6.4265	Λ
18		10				7.9618	4.838	
61		15	10			26.3231	22.0725	
				.				
51.51						150.766675	139.35065	
1.214						1.055	1.045	
26.37						277.212	287.094	
01.915						262.76	274.731	


HJG

Database Diagnose Tool

- Frequency distribution of
 - ≻Ingredient≻Property
 - can be chosen
- Scale is automatically selected according
 Minimum and Maximum value in the database

10

chrish recipes Reset view angles Export as image...

500

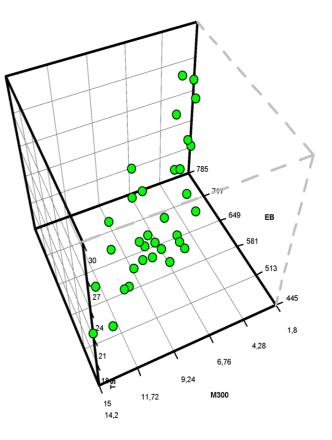
Tensile (TS) over Elongation (EB)

640

Modulus M300 over Elongation (EB)

32 of total 32 recipes included

Database Diagnose Tool


≻3D Correlation Diagram

≻Example:

- X-axis: Elongation at Break (EB)
- Y- axis: Modulus 300 (M300)
- Z-axis: Tensile at break (TS)
- Scale for axis: Selected automatically

can be changed manually

Recipe for confirmation experiment

- Append selected recipe in "Input data" field
 - It is highlighted as "gcunconfirmed"
- Eliminate nonsense values and consolidate
- Round values to two decimal places

Confirmation

 Experiment: Change property values to confirmed values

					Criteria:							Output:	
04	Mixture1	Mixture4	Mixture2	Mixture4	Name	Min	Max	From	То	Wei	Trdoff		
				gc-unconfirr									
104	Mixture1	Mixture4	Mixture2	Mixture4								Mixture1	Mixture4
					SMR 10	0	100					2.75	1.5
00.00	100.00	100.00	100.00	100.00	SMR CV60	0	100					97.25	98.5
					SMR L	0	100						
45.00		7.00			N330	0	75					7.045	0.125
					N336	0	40						
	20.00	20.00	20.00	21.00	N550	0	60					19.45	20.2
					N762	0	85						
					CaCO3	0	20					0.55	0.0
4.00	2.00	8.00	2.00	2.00	Naphtenic Oil	0	45	8	10	10		7.9875	2.082
					Paraffinic Oil	0	10					0.005	0.12
5.00	5.00	5.00	5.00	5.00	ZnO	5	10					5	:
					Zn-2EH	0	1						
2.00	2.00	2.00	2.00	2.00	Stearic Acid	0	2					2	
2.00	2.00	2.00	2.00	2.00	Paraffin Wax	0	2					1.945	1.9
					TMQ	0	2						0.02
3.00	3.00	3.00	3.00	3.00	IPPD	2	4					2.9725	2.98
3.13	3.60	2.25	1.90	3.60	S-80	0.31	4.06					2.35885	3.58582
					DPG-80	0	0.25					0	0.00312
					DTDM-80	0	1.25						0.01562
					TMTD-80	0	1.5						
1.00	1.20	1.50	1.75	1.20	CBS-80	0	2.63					1.452825	1.18357
57.00	29.20	30.90	30.22	29.40	MooneyML(1+	4 27	80					30.7739	29.40
22.00	33.20	32.00	33.34	32.91	Mooney t5 /	8	39					32.0873	32.90
1.10	1.04	1.06	1.04	1.04	Density	1.02	1.21					1.0598	1.04092
71.00	52.60	50.03	50.01	52.71	Hardness	40	71	47	50	50	50	50.01	52.71
10.80	6.14	5.06	4.38	6.22	M300	1.8	14.2	7				5.08455	6.217
27.00	26.20	25.81	28.56	26.11	TS	15	30	25				25.69705	26.10
50.00	600.00	635.32	655.95	598.35	EB	445	785		600			634.6817	598.3
31.00	15.40	23.01	24.67	15.37	C-Set -26°C	10	83		10	10		22.4705	15.36
12.00	6.40	8.61	8.22	6.43	C-Set 0°C	4	16		6			8.525	6.426
	C				•			-	-		7 Þ	•	
65.13	138.8	150.75	137.65	139.8	Total	122.6	251.5					150.766675	139.3506

Confirmation experiments

- To proove calculation of recipe using a database or even historic data from literature three experiments were coosen
 - Recalculation of Filler / Oil DoE (Cabot Compounding Tables)
 - EPDM ENB / Accelerator DoE recalculation (published by DuPont 1998) for optimum ENB content and None n-nitrosamine Acceleratorsystem

 \triangleright

. . .

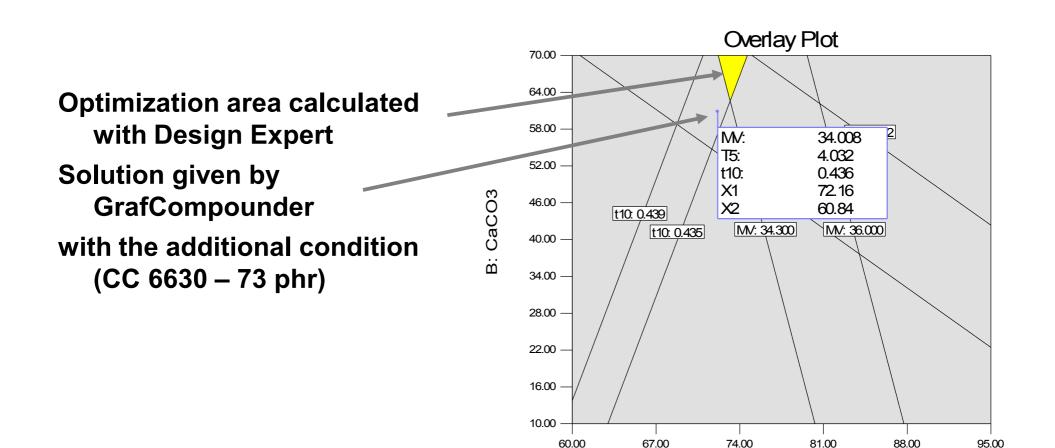
Properties of MB is determined by Polymer, CB and Oil content and the ratio or CB and Oil.

- Unit 2 as a reference (based on Cabot TG RG-135
- **NR Compound** CB 550: 55 phr SMR 5CV – 100 phr Oil: 10 phr ♦CB – Var Oil – Var Maney 100°C ♦ZnO – 5 phr 25.00 Mooney Viscosity: 71 M-Units Mooney Viscosity: 71 M-Units 20.00 -**♦***NR* 100 phr Hardness: 60 ° ShA 15.00 **♦***MBTS – 0.6* [†] ♦S – 2.5 phr ä Tensile: 21 MPa 10.00 -Elongation: 460 % 500 **C-Set: 28%** om 36m 44.00 52.00 ഞ്ഞ 68.00 7600 mm 2000 2800 8400

Calculation method confirmation

- Prove with
 - 1. NR Filler / Oil DoE most of basic physicals are linear
 - 2. Filler / Oil DoE
 - **3. Accelerator DoE**

DoE with 4 Factors


Polymer used: EPDM (Vistalon 8600)

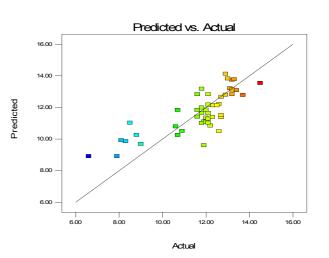
Factor Name	Units	Min	Max
_	A C6630	phr 60.00	95.00
	B CaCO3	phr 10.00	70.00
	C Clay	phr 10.00	50.00
	D Oil	phr 70.00	95.00

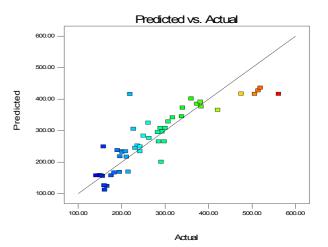
A fractional factorial DoE with 11 compounds only!

1.

A: C6630

DoE published by DuPont Dow in 1998

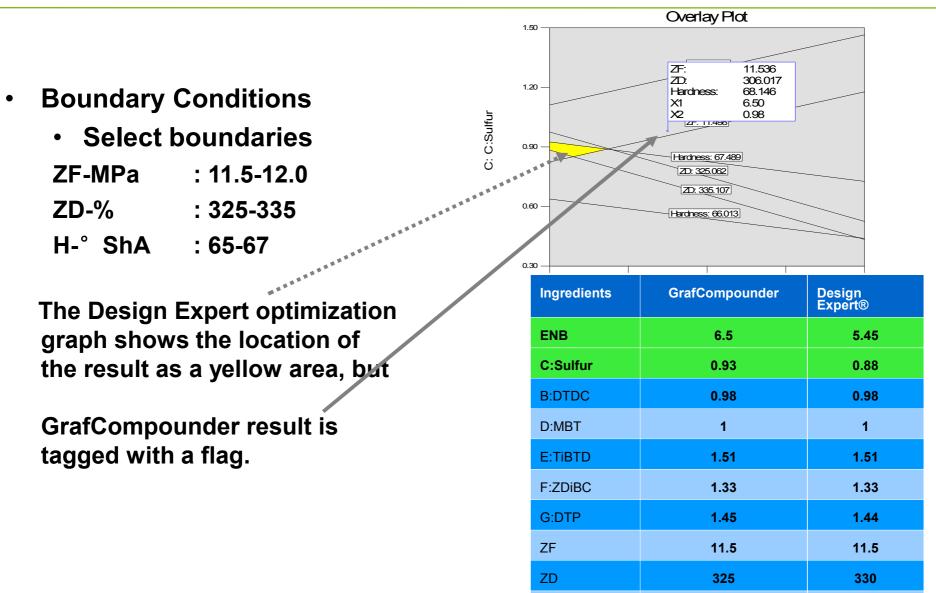

- Factors: ENB, DTDC, S, MBT, TiTBD, ZdiBC, DTP
- DoE with 41 Experiments


Tensile at break is significant with linear model

- Sulfur has larger influence followed by DTDC and TiBTD, but negative
- Elongation is significant with quadratic model, but linear model is a more than sufficient fit
 - Sulfur has the largest influence followed by DTDC

Hardness is sufficient significant with linear model as well

 Main influence Sulfur, DTDC


24

2.

67.5

67

Hardness

3.

Simulation of a DoE

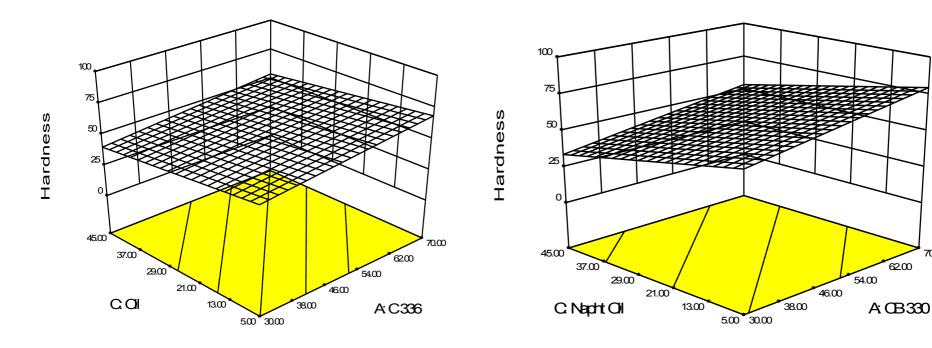
Experiments made in the Laboratory

NR based Compound	LL	UL
Filler 1: CB 336	30 phr	70 phr
Filler 2: CB 550	0 phr	20 phr
Naphtenic Oil:	5 phr	45 phr

- Type of DoE: fractonal factorial
- Software: Design Expert®
- Calculation made with GrafCompounder
 - Database: NR Formula index from MRPRA
- ★ For comparison: Hardness, Tensile / Elongation at break

Hardness:

X1 – A: CB 336


X2 = C: Napht oil

B: CB 550 = 10.00 phr

Hardness Simulation

X1 – A: CB 330 X2 = C: Napht oil

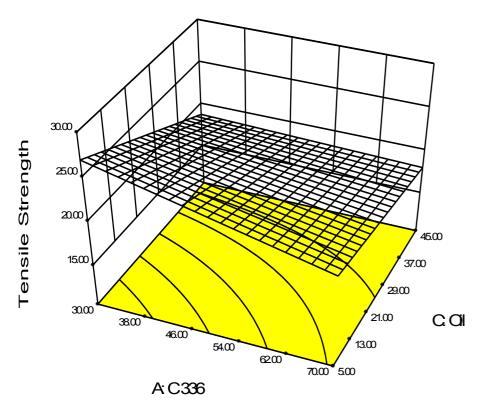
B: CB 550 = 10.00 phr

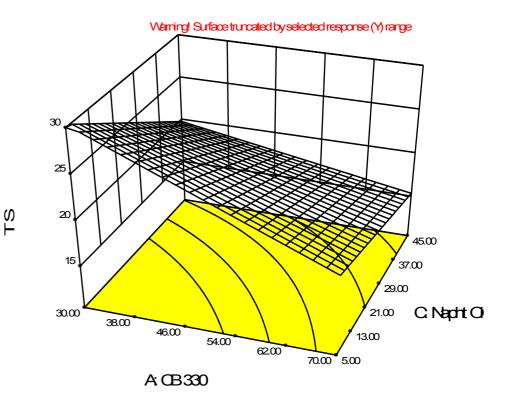
70.00

62.00

Tensile at break:

X1 – A: CB 336


X2 = C: Napht oil


B: CB 550 = 10.00 phr

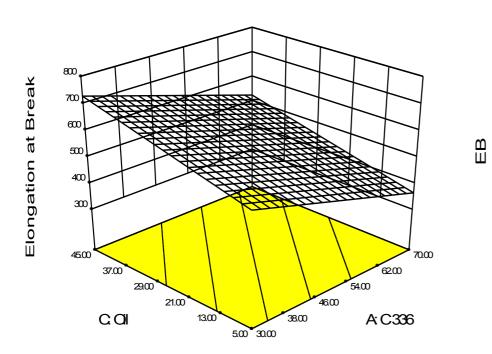
Tensile at break Simulation

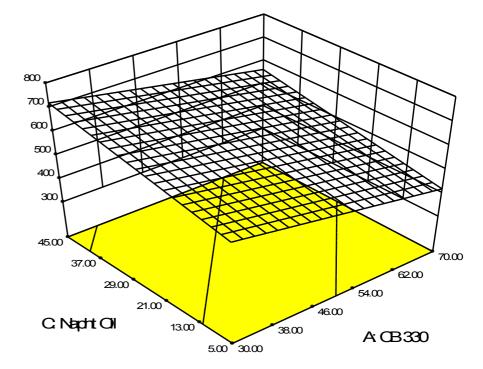
X1 – A: CB 330 X2 = C: Napht oil

B: CB 550 = 10.00 phr

Elongation at break:

X1 – A: CB 336


X2 = C: Napht oil


B: CB 550 = 10.00 phr

Elongation at break Simulation

X1 – A: CB 330 X2 = C: Napht oil

B: CB 550 = 10.00 phr

Introduction
Tools in Compounding
GrafCompounder Version 4.0.6
Program Tools
Confirmation of Simulation
Conclusion

Screenshot of GrafCompounder with demo data, targets and a calculated compound

nput data:												Criteria:						Output:		
				50AL511	50AL512	50AL513	50AL514	50AL515	50AL516	50AL517	50AL	Name N	1in	Max Fr	om To	We	i Trdoff			
	NR Testdateien			Recipes:																
Code:	Ingredients:	Cost:	Density:	50AL511	50AL512	50AL513	50AL514	50AL515	50AL516	50AL517	50AL								Mixture4	
A001	SMR 10	280.00	0.92	100.00	100.00	100.00	100.00	100.00	100.00	100.00		SMR 10	0	100				2.75	1.5	
A003	SMR CV60	290.00	0.92									SMR CV60	0	100				97.25	98.5	
A004	SMR L	310.00	0.92									SMR L	0	100						
B003	N330	115.00	1.80	10.00	30.00	50.00	25.00	45.00	75.00	45.00		N330	0	75				7.045	0.125	
B004	N336	115.00	1.80									N336	0	40						
B005	N550	115.00	1.80									N550	0	60				19.45	20.2	
B006	N762	115.00	1.80									N762	0	85						
C010	CaCO3	24.00	2.71	20.00	20.00	20.00	20.00	20.00		20.00		CaCO3	0	20	-			0.55	0.05	
D002	Naphtenic Oil	116.00	0.89	5.00	25.00	45.00	5.00	25.00	45.00	5.00		Naphtenic Oil	0	45	8	10	10	7.9875	2.0825	
D001	Paraffinic Oil	120.00	0.90									Paraffinic Oil	0	10				0.005	0.125	
E001	ZnO	385.00	5.60	5.00	5.00	5.00	5.00	5.00	5.00	5.00		ZnO	5	10				5	5	
E021	Zn-2EH	150.00	1.80									Zn-2EH	0	1						
F001	Stearic Acid	165.00	0.92	2.00	2.00	2.00	2.00	2.00	2.00	2.00		Stearic Acid	0	2				2	2	
F101	Paraffin Wax	130.00	0.90									Paraffin Wax	0	2				1.945	1.97	
G001	TMQ	924.00	1.15									TMQ	0	2					0.025	
G001	IPPD	924.00	1.15	2.00	2.00	2.00	2.00	2.00		2.00		IPPD	2	4				2.9725	2.985	
H001	S-80	158.00	1.80	1.88	1.88	1.88	1.88	1.88	1.88	1.88			0.31	4.06				2.35885	3.585825	
K804	DPG-80	420.00	1.28									DPG-80	0	0.25				0	0.003125	
H802	DTDM-80	360.00	1.28									DTDM-80	0	1.25			_	·	0.015625	
K001	TMTD-80	396.00	1.11									TMTD-80	0	1.5						
K005	CBS-80	708.00	1.28	0.63	0.63	0.63	0.63	0.63	0.63	0.63		CBS-80	0	2.63		_		1.452825	1.183575	
DDAA4	Properties:			00.00	00.00	04.00	04.00	00.00	40.00	00.00			07	00				00 7700	00.400	
PR001	MooneyML(1+4) 100°C			32.00	36.00	31.00	34.00	30.00		60.00		MooneyML(1+4	27	80			_	30.7739	29.402	
PR002	Mooney t5 / 120°C			28.00	28.00	32.00	28.00	32.00		20.00		Mooney t5 /	8	39			_	32.0873	32.907	
PR003	Density			1.08	1.12	1.16	1.13	1.16		1.19			1.02	1.21	47	- 0	50 50	1.0598	1.040925	
PR004	Hardness M300			42.00	41.00 3.00	40.00 3.00	48.00 4.40	48.00		61.00		Hardness	40	71	47	50	50 50	50.01	52.711	
PR007	M300 TS							4.60		8.00		M300	1.8	14.2	25		_	5.08455	6.2179	
PR008 PR009	EB			25.00	21.00	15.00	25.00	20.00		23.00		TS EB	15 445	30 785		00	_	25.69705 634.6817	26.107 598.35	
PR009 PR020	EB C-Set -26°C /24h [%]			785.00	725.00	690.00 30.00	715.00	705.00		560.00 29.00		EB C-Set -26°C	445 10	785 83		00 10	10	22.4705	598.35	
PR020 PR021	C-Set 0°C /24h [%]			10.00	14.00	14.00	8.00	12.00		13.00		C-Set 0°C	4			6	10	8.525	6.4265	
	0-381 0 0 /2411 [70]			10.00	14.00	14.00	8.00	12.00	10.00	13.00	7 -		4	10		U	7.6	6.525	0.4200	_
				440.54	490.54	220 54	404 54	204 54	054.54	404.54	-		100.0	254 5					400.05005	
Total				146.51	186.51	226.51	161.51	201.51		181.51				251.5				150.766675	139.35065	
Density				1.097	1.116	1.128	1.138	1.148		1.186		Density (calc.)						1.055 277.212	1.045 287.094	
Cost (per				262.484	237.406	220.591	259.16	235.861	219.811	255.359				326.3						
Cost (per				239.274	212.729	195.559	227.733	205.454	187.552	215.311		Cost (per 1	107.5	301.9				262.76	274.731	
Recipe ratio	s in %:			_		0.05													ratios (should b	e 100
						0.25												100		
					nat: 12345.6		Imp							(new mix						

HJG

Compound Simulation with GrafCompounder

- Creation of a formula with multiple criteria query including
 - Ingredients
 - Properties
- Traceability back to formulas used in calculation
 - Analysis of outliers and their correction or elimination in the database is possible.
 - Integration of results from statistical experimental designs to improve database
 - Merger of databases of different origin
 - either with copy / import
 - Merger of data.gc files

Result of simulation MUST be confirmed by an experiment.

 Probability of a match between calculation and confirmation experiment result is about 90-5% according first experience

→ Summary:

- The resulting formulas calculated are inline with general rules of compounding
 - ✤ Differences with calculations based on regression is marginal
- Only one confirmation experiment would be needed as opposed to multiple trials in case of development targets.
- Area of use / advantage
 - Compound Cost estimation
 - Starting Formula for Compound Development
 - Simulation of Recipe for Specification Adjustments
 - Historic Data usage and improved Data storage
- New materials have to be evaluated with Statistic Experimental Design

More information under: www.grafcompounder.com

Release of the "GrafCompounder" Version 4.04 June 2021

Upgrades for Owners of Version 3.211 provided for a special price Free upgrade if purchased 2nd half 2020 / 1st half 2021

Thank you for joining this presentation.

Any question, comment?

More information under: www.grafcompounder.com